

Hardware and Platforms An overview of SPP-1500 projects

Mehdi Tahoori

Karlsruhe Institute of Technology

SPP1500.itec.kit.edu

Projects

- PERCIES: Providing Efficient Reliability in Critical Embedded Systems
- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

Scope of the Projects

	Device and Circuit	Microarchitecture RTL	Architecture and System
Permanent Failures		OTERA	CRAU
Transient Errors	PERICES	PERICES, OTERA, GetSURE	CRAU, GetSURE
Aging Effects		Ambrosia, OTERA, GetSURE	Ambrosia, GetSURE, Term3D

	Device and Circuit	Microarchitecture RTL	Architecture and System
ASICs	PERICES	PERICES	
Processors	PERICES	PERICES, Ambrosia, GetSURE	Ambrosia, GetSURE
Reconfigurable Fabric		OTERA	
Heterogeneous System		OTERA	CRAU, Term3D

NSF Variability – DFG SPP1500 Meeting spp1500.itec.kit.edu

Projects

PERCIES: Providing Efficient Reliability in Critical Embedded Systems

- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

NSF Variability – DFG SPP1500 Meeting spp1500.itec.kit.edu

PERICES Overview

- **Goal:** Technology relevant cross-layer soft error modeling and mitigation
- **Challenges:** Soft Errors are technology and workload dependent
 - Error generation:
 - FinFET vs. Planner
 - MET error-site identification
 - Error propagation:
 - Accurate electrical masking model for nanoscale technologies
 - Correlated error propagation
 - Modeling error propagation in systems in regular (reg file, cache) and irregular (random logic, controller) structures
 - Cross-layer soft error estimation
 - Considering both error generation and propagation
 - In a unified platform

Error Generation

FinFET Technology

DFG SPP 1500

PERICES

- Immunity to short channel effects
- More 3-D compared to MOSFET

Error Generation at SRAMs

- Physical-level (Geant4) : Passage of particle in the matter
- Circuit-level (SPICE): SRAM characterization for different parasitic current
 - SRAM cell failure probability (SEU vs. MBU)

Error Generation at Logic

- Remarkable fraction of particle strikes results in Multiple Transients (MTs) [Harada111RPS][Rossi05DFT]
- Our method: MT patterns extracted from MBU patterns
- Using fast and accurate layout analysis (generation)
- Projecting the effect at the netlist level (propagation)

6

Substrate

circuit layout

FG PI: Mehdi B. Tahoori

spp1500.itec.kit.edu

PERICES Error Propagation

Single-cycle error propagation at circuit-level

- Electrical Masking [Kiamehr13VTS]
 - In 45 nm and beyond: Voltage fluctuation >10% → affects electrical masking
 - **Proposed:** Trapezoidal LUT-based model \rightarrow 99.7% accurate compared to SPICE
- Correlation in logical masking [Chen13JETTA]
 - Correlated error propagation considering input and internal correlation
 - Very useful for error abstraction at higher levels

Multi-cycle error propagation at architecture-level

- ACE analysis → Cannot model circuit-level masking
- Circuit-level error propagation → Cannot model architecture and application-level masking
- CLASS: Combined Logic Architecture Soft error Sensitivity analysis [Ebrahimi13ASPDAC]

PERICES

DFG SPP 1500

Case Study: OR1200 Processor

OR1200 has ~ 50,000 gates/flip-flops, 4 memory units, one register-file
 Entire processor analysis results

Overall SER Where Caches and Register-file SRAMs Have Different Interleaving Contribution of Different Types of Components on the Overall SER Distances (IDs)

DFG SPP 1500 PERICES

Achievements & Future Work

- Industrial Collaborations with iRoC, IBM, and ARM
- Achievement: Cross-layer soft error rate analysis platform
 - Device: Failure in Time (FIT) rate analysis
 - Layout: Multiple transient error sites extraction
 - Circuit: Single-cycle error propagation
 - Architecture-level: Combined logic and architecture analysis
 - Fast and accurate full system soft error rate analysis

Future research direction: Cost-efficient soft error mitigation

- Soft error-aware high-level synthesis
- Circuit-level mitigation of soft errors
- Efficient error correction codes (ECCs) for small memory arrays
- Protecting configuration bits of FPGAs

spp1500.itec.kit.edu

Projects

PERCIES: Providing Efficient Reliability in Critical Embedded Systems

- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

Overall Project Objectives

- Reliability-Driven Code Generation and Execution => Engage Multiple System Layers, i.e., Compiler, Offline System Software, Run-Time System
 - Objective 1: Developing Reliability-Driven Compilation and System Software Techniques for Dependable Code Generation and Execution
 - Objective 2: Developing an Adaptive Run-Time System for Dependable Code Executions
 - **Objective 3:** Modeling Reliability and Resilience
- Overall Objective: How to jointly exploit the tight integration of system software, compilation techniques, and adaptive run-time system to enable a highly-dependable software system for embedded systems

Our Novel Contributions and Goals

Joint reliability optimizations at compilation and system software layers using both offline and online techniques

Performance vs. Reliability Tradeoff

DFG Pls: J.-J. Chen, M. Shafique

SPP1500 Kickoff Meeting, Böblingen, Feb. 8th spp1500.itec.kit.edu

Conclusion

- Bridging the gap between hardware and software is necessary to enable software-level reliability estimation and optimization schemes
- Software can't erase the problem of unreliable hardware; BUT: it can contribute and relieve the problem => Reliability increase basically comes for free (probably some performance overhead)

Projects

- PERCIES: Providing Efficient Reliability in Critical Embedded Systems
- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

DFG SPP 1500 OFFICE SPECIAL S

Scope and Focus: Reliability for Reconfigurable Systems

- Phase-I: Online Test Strategies for Reliable Reconfigurable Architectures
 - Reliable Reconfiguration: assure that FPGA structure and reconfiguration process work correctly
 - Focusing on permanent faults
- Phase-II: Pro-Active Self-Defense by Monitoring, Testing, and Failure Prediction
 - Broadening scope towards transient faults
 - Runtime reconfigurable reliability/performance trade-off
 - Aging mitigation methods for reconfigurable architectures

J. Henkel, H.-J. Wunderlich

16

DFG SPP 1500 **OTERA** OTERA

Pre-Configuration Test (PRET) and⁷ Post-Configuration Test (PORT)

- PRET: Test structural integrity of reconfiguration fabric
 - Reconfigure several structural tests at runtime before reconfiguration with

J. Henkel, H.-J. Wunderlich

mission logic

PORT: Test correct reconfiguration and interconnection

 A_2

DFG SPP 1500

FRΔ

Original Config.

 A_3

A₄

- Tolerate permanent faults
- Mitigate aging process
- Principle:
 - Implement functional modules in different ways in terms of CLB usage → diversified configurations
 - Find optimal scheduling to minimize the stress per CLB

Experimental Results for Module Diversification

Switching activities of

DFG SPP 1500

a), b) two diversified configurations, c) an alternating schedule thereof,

d) a balanced scheduled with min. number of 4 configurations

19

Conclusion

- Pro-active self-defense to defend against short-, mid- and long-term faults
- System adaption based on modeling, monitoring, diagnosis, and prediction
 - Incorporate efficient online test methods at system level (Phase I)
 - Reactive and pro-active system hardening, resource management (Phase II)

Projects

- PERCIES: Providing Efficient Reliability in Critical Embedded Systems
- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

DFG SPP 1500 VirTherm-3D

Motivation & Challenges

- Thermal problems on current and future chips lead to decreased dependability (short/long term effects)
- Problem worsens with 3D stacked manycore architectures
 - Centrally controlled thermal management not scalable
- Providing thermal-aware task allocation
 - complexity handled by distributed decision techniques through dynamic clustering concept
- Agent-based task migration from hot cores to cooler ones and keeping their (I/ O) communication reliable, secure and transparent

Techniques for consistent migration

DFG SPP 1500

VirTherm-3D

Results ThermalMgmt

Experimental setup conducted in our lab during 1st project phase

DFG Pls: Jörg Henkel, Andreas Herkersdorf

Temperature Layer 1

VirTherm-3D

Results ThermalMgmt

Different thermal management strategies highly influence the expected time to failure

- Adaptive policy: adaptively change the size of the set of cores running high performance tasks depending on aging budgets
- None: random task placement (as long as aging budget allows)

DFG SPP 1500 VirTherm-3D

Sytem Management

High-level thermal simulation assumes one overall power value per component (variations due to conductivity)
 Low-level simulations reveal varied temperatures inside register file
 75°C
 75°C
 67.5°C

Controlling accesses inside register file reduces temperature without reducing overall power consumption

Jörg Henkel, Andreas Herkersdorf

System management must be performed on multiple levels (fine and coarse-grained)

VirTherm-3D

DFG SPP 1500

Ongoing and Future Work

- Generalization of thermal management for (embedded) 3D MPSoC
 - Homogenous → heterogenous architecture

 - Thermo-centric → multi-fault error model (incl. aging)
 - Mixed-granularity levels and abstraction of fault-models

SPP1500

DFG SPP 1500 VirTherm-3D

Projects

- PERCIES: Providing Efficient Reliability in Critical Embedded Systems
- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

DFG SPP 1500 Ambrosia

Overview

- Device aging at nanoscale technologies
 - BTI, HCI, TDDB, etc.
 - Chip lifetime is significantly reduced
 - Prediction is very challenging
 - Temperature, Workload, Voltage, Runtime, Frequency, etc. have impact
- Higher levels of design stack

Mehdi Tahoori

- Considerable impact on aging \rightarrow opportunities
- Objectives
 - Design-time/runtime modeling & mitigation
 - Circuit-level mitigation techniques
 - e.g. input vector control, path balancing
 - (Micro)-Architecture-level mitigation
 - aging-aware NOP, instruction scheduling, pipeline stage lifetime balancing
 - Modeling at microarchitecture-level
 - Proactive aging-aware adaptation (\rightarrow DVFS)
 - Compiler-level techniques for aging reduction

spp1500.itec.kit.edu

Wearout Modeling

ExtraTime Framework

- Microarchitectural simulation framework containing:
 - Power and temperature models
 - Contains (micro)-architectural aging models for BTI and HCI
 - Input: usage (performance statistics), temperature, tech. parameters
 - Output: delay degradation, mean time to failure (MTTF)

DFG SPP 1500

Ambrosia

Static Mitigation Techniques

- NOP-Instruction
 - NOP-Instruction does not affect program execution
 - Idea: Replace default NOP with aging-aware NOP
- Instruction Scheduling
 - Instructions have different timing criticality Critical instructions will fail first
 - Only 1/5 instructions area critical
 - Idea: Use special units for critical instructions
 & adapt scheduling accordingly
- MTTF-Balanced Pipeline Design / Path-Balancing
 - Non-uniform aging rates among different pipeline stages \rightarrow Huge optimization potential

%

Delay Change in

- Idea: Balance pipeline stage delays at end of lifetime and not at the beginning
- Instruction Set Encoding

: Mehdi Tahoori

- Instruction opcodes have significant aging impact
- Idea: Design the instruction set encoding in an aging-aware way

NSF Variability – DFG SPP1500 Meeting spp1500.itec.kit.edu

DFG SPP 1500

Ambrosia

Dynamic Mitigation Techniques

- Fine-grain, pro-active dynamic voltage & frequency scaling
 - Based on available sensor/monitoring infrastructure + novel expert system
 - Using machine learning techniques
- Platforms

: Mehdi Tahoori

- Real experiments using on-chip sensors and monitors of IBM POWER 7+
- Simulated using ExtraTime framework

NSF Variability – DFG SPP1500 Meeting

spp1500.itec.kit.edu

31

Achievements & Future Work

- Achievements
 - Modeling & Evaluation platform at (micro)-architecture-level
 - Various static & dynamic cross-layer aging mitigation techniques
- Industry Collaboration and Future Work
 - Collaboration with IBM
 - System health prediction and adaptation using on-chip monitors
 - POWER 7+ system
 - Collaboration with IMEC
 - Aging-aware statistical timing analysis
 - Exploiting application-level knobs for better aging mitigation

Mehdi Tahoori

Projects

- PERCIES: Providing Efficient Reliability in Critical Embedded Systems
- Get-SURE: Generating and Executing Dependable Application Software on UnReliable Embedded Systems
- OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- VirTherm-3D: Communication Virtualization Enabling System Management for Dependable 3D MPSoCs
- Ambrosia: Cross-layer Modeling and Mitigation of Aging Effects in Embedded Systems
- CRAU: Compositional System Level Reliability Analysis in the Presence of Uncertainties

Goals

- Develop a framework providing formal models and techniques for *compositional* and *uncertainty-aware* reliability analysis (CRA)
- Combine and extend well-known reliability analysis techniques across different levels using adapters
- Use CRA during design space exploration to consider reliability/cost trade-offs cross-level

SPP1500 Meeting, Irvine, Nov. 22nd spp1500.itec.kit.edu

Perm. & Tran. Faults Consideration

36

- The ratio of permanent and transient faults that induce system failure of a real-world system
- Enables to carefully select the means to increase reliability, e.g., wrt. to the planned lifetime

Future Work

- Focus on advanced uncertainty modeling
- Feedback analysis results to the optimization in greater detail
 - (not just classic reliability measures like MTTF etc.)

